1	(a)	compounds are highly coloured used as catalysts more than one oxidation state Four boxes ticked that include three correct choices [2] Four boxes ticked that include two correct choices [1] Four boxes ticked that include one correct choices [0] Five boxes ticked [0]			[1] [1] [1]
	(b)		period 4		[1]
		(ii)	26 <i>p</i> and 30 <i>n</i>		[1]
	(c)		limestone		[1]
		(ii)	slag		[1]
		(iii)	iron ore		[1]
	(d)	to t to r	ourn or provide he nake carbon mon	eat oxide	[1] [1]
	(e)	mile stai	d steel inless steel	cars or machinery or fridges etc. cutlery or chemical plants etc.	[1] [1]
					[TOTAL = 12]

protons electrons neutrons	2 2 4	[3]
La ³⁺ + 3e- = La hydrogen bromine NOT Bromic caesium hydroxide ignore any comments	le s about electrodes	[1] [1] [1] [1]
metal hydroxide or h hydrogen	ydroxide ions	[1] [1]
correct formula 1Ba t charges correct 8e around the anion All three points Two points ONLY If covalent [0] out [2]	o 2C <i>l</i> [1]	[2]
	protons electrons neutrons La ³⁺ + 3e- = La hydrogen bromine NOT Bromic caesium hydroxide ignore any comments metal hydroxide or hy hydrogen correct formula 1Ba t charges correct 8e around the anion All three points Two points ONLY If covalent [0] out [2]	protons2electrons2neutrons4 $La^{3^+} + 3e = La$ hydrogenbromine NOT Bromidecaesium hydroxideignore any comments about electrodesmetal hydroxide or hydroxide ionshydrogencorrect formula 1Ba to $2Cl$ charges correct8e around the anionAll three pointsTwo pointsONLY [1]If covalent [0] out [2]

(e)	alternating (positive and negative) pattern	[1] [1]
(f) (i) (ii)	barium - oxygen or ionic bond forming energy released/exothermic bond breaking energy taken in/endothermic more energy released	[1] [1] [1] [1]
		TOTAL = 17

2

3 (a) (i) high densities

	1	high fixed points mp or bp coloured compounds hardness complex ions		
		ANY three	[3]	
	(ii)	13	[1]	
(b)	(i)	manganese chloride water	[1] [1]	
	(ii)	manganese(III) and (IV) oxides	[1]	
(c)	(i)	rate decreases or becomes zero	[1]	. . .
		COND concentration decreases hydrogen peroxide used up ONLY [1]	[2]	
	(ii)	steeper initial gradient double final volume	[1] [1]	
	(iii)	initial gradient less final volume the same must relate to shape of graph	[1] [1]	

TOTAL=14

Question	Answer		ks
4(a)	number of moles of NaNO ₃ used: $3.40/85 = 0.04(00)$ (mol) OR $4.(00) \times 10^{-2}$ (mol); number of moles of O ₂ formed: $0.04/2 = 0.02(00)$ (mol) OR $2.(00) \times 10^{-2}$ (mol); volume of O ₂ formed: $0.02 \times 24 = 0.48$ (dm ³);		3
(b)(i)	(a substance which is) a proton/H ⁺ /hydrogen ion acceptor;		1
(b)(ii)	$\begin{array}{rcl} Mg(s) \ + \ 2H_2O(I) \ \rightarrow \ Mg(OH)_2(aq) \ + \ H_2(g) \\ Mg(OH)_2; \ rest \ of \ equation; \end{array}$		2
(c)	 M1 add a <i>named</i> acid, e.g. HC<i>l</i> and a named alkali, e.g. NaOH; M2 Al₂O₃ will react with/neutralises both reagents; M3 and so it will dissolve into the reagent/form a solution; 	1 1 1	3
(d)(i)	cov		1
(d)(ii)	any 2 from: high melting point/high boiling point; poor conductor (of electricity); hard; insoluble;		2
(e)(i)	M1 (electrostatic) <u>attraction;</u> M2 between <u>oppositely charged ions;</u>	1 1	2
(e)(ii)	₃ (PO ₄) ₂ ;		1

Question	Answer		irks
(f)(i)	M1 <i>exothermic mark</i> : horizontal product energy line at lower energy than that of reactant energy line; M2 <i>label of product mark</i> : SF ₄ ; M3 <i>correct direction of vertical heat of reaction arrow</i> : arrow must start level with reactant energy and finish level	1 1 1	3
(f)(ii)	with product energy and must have only one (correct) arrow-head; M1 bond energy of $2F_2$: 2 × F-F = 2 × 160 = 320 (kJ/mol); M2 bond energy of all bonds in SF_4 : 780 + 320 = 1100 (kJ/mol); M3 calculated bond energy of SF_4 divided by 4: 1100/4 = 275 (kJ/mol);	1 1 1	3
(g)(i)	bacteria;		1
(g)(ii)	name of compound: cobalt(II) chloride; from: blue; to: pink;	1 1 1	3
(h)(i)	it has a complete outer shell/a full outer shell/8 electrons in the outer shell;		1
(h)(ii)	lamps;		1